
Efficiency and Scalability of an Explicit

on an IBM POWER4 System

Operator

Michael Frumkin

NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center, Moffett Field, CA 94035-1000

f rumkin©nas, nasa. gov

August 26 2002

Abstract

\Ve present an evaluation of the efficiency and tile scalability of an
explicit CFD operator on an IBM POWER4 system.

1 Introduction

The POWER4 architecture [6] exhibits a common trend in HPC architectures:

boosting CPU processing power by increasing the number of functional units,

while hiding the latency of memory access by increasing the depth of the memory

hierarchy. The overall machine performance depends on the ability of the caches-
buses-fabric-memory to feed the functional units with the data to be processed.

In this study we evaluate the efficiency and scalability of one explicit CFD

operator on an IBM POWER4. This operator performs computations at the

points of a Cartesian grid and involves a few dozen floating point numbers and
on the order of 100 floating point operations per grid point. The computations

in all grid points are independent.
Specifically, we estimate the efficiency of the RHS operator (SP of NPB) on

a single processor as the observed/peak performance ratio. Then we estimate

the scalability of the operator on a single chip (2 CPUs), a single MCM (8

CPUs), 16 cpus, and the whole machine (32 CPUs). Then we perform the same
measurements for a cache-optimized version of tile RHS operator.

For our measurements we use the HPM (Hardware Performance Monitor)
counters available on the POWER4. These counters allow us to analyze the

obtained performance results.

2 Experimental Setup

We used the OpenMP version of the SP NAS Parallel Benchmarks suite (PBN-

3.064) [3]. We ran SP.A on a 1.3 GHz, 32-processor POWER4 machine (ibm02),



providedbyIBM to theNASDivisionof NASAAmesResearchCenter.We
compiledSP.Awithtile followingoptions:

• F77 = xlf_r

• FFLAGS = -04 -qsmp=omp -qnosave -qhot -qtune=pwr4

• FLINK = xlf_r

• FLINKFLAGS = -qsmp=omp

We analyzed the performance of explicit operators as defined in the compute
rhs and txinvr subroutines of the SP benchmark. These subroutines consume

about 43% of the total execution time of the SP.A benchmark on the IBM

POWER4 machine. In the original version, we inserted calls to start/stop the

HPM [4] counters at the entry/exit of the compute rhs and txinvr subroutines.
In the optimized version, we inserted calls to start/stop the HPM counters at

the entry/exit of the merged compute rhs/txinvr subroutines.

3 Experimental Results

We estimate the efficiency of the subroutine on a single processor by using some

counters of groups 15 and 60, see Table 1.

Table h The Floating Point Efficiency (FP-efficiency) of the compute"

rhs/txinvr subroutine. Here the FP-elticiency is defined as the ratio
of the number of FPU instructions executed by the program to the

maximum number of FPU instructions that a single processor is ca-

)able of executing during the program WCT.

Counter Value

Wall Clock Time (WCT) (sec) 58.9

PM_FPU_FDIV (FPU executed FDIV instr.) 200.7E+6

PM FPU FMA (FPU executed multiply-add instr.) 18.0E+9

PM FPU ALL (FPU executed add, mult, sub, cmp, or sel instr.) 11.5E+9

PM_CYC (Processor cycles) 76.4E+9

FP-efficiency 15.5 %

Here we define the single processor FP-efficiency as the ratio of the number

of FPU instructions executed by the program to the maximum number of FPU

instructions that a single processor is capable of executing during the program
WCT. Hence the FP-efficiency equals (ll.5E+9+2*18.0E+9)/(4*l.3E+9*58.9)

= 15.5%. This FP-efficiency is comparable to ttle 20% efficiency of CFD codes

on the SGI Origin 2000 [5]. It is well known that the main bottleneck of cache

based systems is feeding the processor with data. We have shown that on Origin

systems data reuse, nest fuse, loop interchange, and removal of auxiliary arrays



improveperformanceofthecompute_rhssubroutineby40%seeTable2 in [2].
Herewealsomergethecomputerhs andtxinvr subroutines.

In thefollowingwestudythePOWER4memorysubsystemusingcounters

of groups 5 and 59:

• PMCYC (Processor cycles)

• PM LSU LMQ_SRQ EMPTY_CYC (Cycles LMQ and SMQ empty)

• PM_DATA_FROM_MEM(Data loaded from memory)

• PM_DTLB_MISS (Data TLB misses)

• PM_DATA_FROM_L3 (Data loaded from L3)

• PM_DATA_FRUM_L35 (Data loaded from L3.5)

• PM_DATA_FROM_L2 (Data loaded from L2)

• PM DATA FROM L25_SHR (Data loaded from L2.5 shared)

• PM_DATA_FROM_L25_MOD (Data loaded from L2.5 modified)

• PM_DATA_FEflM_L2?5_SHR (Data loaded from L2.75 shared)

• PM_DATA FROM L275 M0D (Data loaded from L2.75 modified)

• PM_LD_MISS_L1 (L1 Data cache load misses)

• PM_ST_MISS_L1 (L1 Data cache store misses)

• PM LD_REF L1 (L1 Data cache load references)

• PM ST REF L1 (L1 Data cache store references)

Note, since the POWER4 uses the enhanced MESI protocol [6], then in
addition to direct cache traffic events accumulated in the PM_DATA_FROM_L3

and PM_DATA_FROM_L2 counters, it has cross-L3 and cross-L2 traffic events. The

counter PM_DATA_FROM_L35 accumulates the traffic volume between a processor
and an L3 cache in other MCMs. The counters PM_DATA FROM L25_SHR and

PM DATA_FROM_L25_MOD accumulate the traffic volume between a processor and

an L2 cache in the same MCMs, while the counters PM_DATA_FROM_L275_SHR

and PM DATA_FROM_L275_MOD accumulate the traffic volume between a processor

and an L2 cache in other MCMs.

In addition to these counters, in our plots, we have included WCT as reported

by the HPM for each instrumented section of the code. The subroutine execution

times, total number of cycles, and number of cycles when the Load/Store Unit

(LSU) queues are empty are shown in Figure 1 and Table 2.
This plot shows that the single chip execution times (1 and 2 processors) are

almost identical for both versions of the code. On 8-32 processors, the optimized

code is 12%-30% faster than the original code. This partially results from a



°i40
W

=e
z 20

0

H OR_WCT

m---I OR_LSU LMQ_SRQ EMPTY C¥C

¢- • OR CYC
OPWCT

H Op LSU LMQ_SRQ EMPTY CYC

I ¥ _' OPCYC

11 2t

Number of processors

Figure 1: The performance of the two versions of the compute_rhs and txinvr
subroutines. WCT is in seconds, LSU_LMQ SRQ_EMPTY_CYC in 109, events and

CYC is in 10 l° events. Here and below, we replace the counter prefix PM with

OR for the original program and OP for the optimized one.

Table 2: The performance of the two versions of the compute_rhs/txinvr

Subroutine.

Counter/nprocs 1 2 8 16 32

0R_WCT (sec) 58.09 29.92 9.81 5.32 6.27

0P_WCT (sec) 57.42 29.16 8.14 4.57 4.06

OR_CYC 7.53 7.73 8.52 9.02 11.94

0PCYC 7.44 7.47 7.76 8.06 10.21

0R LSU_LMQ_SRQ EMPTY_CYC 5.66 5.69 6.30 6.25 6.47

0P LSU LMQ_SRQ EMPTY_CYC 1.72 1.75 2.00 2.03 3.55

bigger overhead (see CYC curve) and longer idling (LSU_LMQ_SRQ_EMPTY_CYC

curve)ofthe originalcode.
The memory trafficvolume and the TLB miss numbers are shown in Figure

2,whilea comparison ofL3 trafficisshown inFigure3. Figure2 shows expected

reductionin main memory traffic(up to a factorof 2.3 on a singleMCM) and

TLB misses (up to a factorof 3) forthe optimized code. Figure 3 shows that

the optimized code obtainsmore data from L3 than the originalcode because it

isnecessaryto compensate forthe smallervolume ofmain memory traffic.This

figurealsoshows that the volume ofthe crossMCM L3 trafficinthe optimized

code on the 32 processorsislargerthan that in the originalcode.

The graphs ofFigures4 and 5 show that both crosschip and crossMCM L2

trafficof the originalcode are about 25-10070 more intensivethan that of the

optimized code,except crossMCM L2 shared trafficwhich isabout the same.

The graphs of Figures 6 and 7 show that both codes have about the same

number ofLI missesand L1 references.



3O

2O

_0

¢a

ElO
z • ..............

1t 21 31 1 11 21 31

Number processors Number of Processors

Figure 2: The performance of the
two versions of the compute_rhs and
txinvr subroutines. DATA_FROM NEM

in GBytes, DTLB MISSES are in 106
events.

Figure 3: A comparison of L3 traffic

volume (GB) for the original and the

optimized versions of the subroutine.

4 Interpretation of the Results

The results show a correlation between the main memory traffic and the program

performance. The shift of the memory traffic to L3 traffic does not improve per-

formance of single chip (1-2 processor) programs. On the other hand, for 8-32

processors, optimization of the memory traffic does improve program perfor-
mance. At the extreme of 32 processors, the original program runs slower than

on 16 processors, while the optimized program runs faster than on 16 proces-
sors. The improved data locality reduces both L2 and cross L2 traffic (Figures

4 and 5) which improves overall performance.

5 Conclusions

We have to follow a fine line in drawing conclusions from the limited exper-

iments we have performed on such a complex architecture as the POWER4.
Some circumstances of the execution environment were beyond our control,

particularly.the interference with other users and a layout of the threads across

the processors. We minimized side effects of these uncontrollable circumstances

by monitoring workload with topas and reporting the best result of a set of

multiple runs of the code.

Our experiments show that the compiler performs good code optimization

for single chip (1 and 2 processors) execution. Our attempts to optimize L2 and

L1 performance with an elaborate tiling of the operator's iteration space did

not yield an essential reduction in the L2 and L1 misses.
On the other hand, the complexity of the MESI protocol [1] and of its en-



[ IHOR_DATA_FROML25_s.HR ]
[ I_. _,_ OR_DATA_FROM L25 MOD I
t IA--iOR_AtA-FROM_-L2ZgSHR ]

z

O: r : 7
11 21 31

Number of Processors

Figure 4: The L2 traffic volume (GB)

in the original version of the subrou-
tine. The volume of cross L2 traffic

is shown in a 100 times smaller scale

(0.01 GB).

100

8O

,_ _o

_ 4o
E
z

20

H OP DATA FROM L2

H OP_DATA_FROM_25 SHR

¢ OP_DATA_FROM_L25_MOD

Jlk_ OP_DATA FROM_L275_SHR

11 21 31

Number ol Processors

Figure 5: The L2 traffic volume (GB)

in the optimized version of the sub-
routine. The volume of cross L2 traf-
fic is shown in a 100 times smaller

scale (0.01 GB).

hanced version implemented in the POWER4 system [6] does not allow the

compiler to do an optimization of the same quality beyond a single MCM. Our
data locality optimizations reduced memory traffic and improved performance

by 15% and 20% on 16 and 32 processors, respectively.
Acknowledgment. The author appreciates the guidance of IBM staff mem-

bers Charles Grassl and Luiz DeRose in the POWER4 architecture, and editorial

suggestions by Randy Kaemmerer.

References

[1] David E. Culler. Protocol Design Tradeoffs in Snooping Cache
Coherent Multiprocessors. CS 258, Spring 99. U.C. Berkeley.

http: / / www.cs.berkeley.edu / &fller/ cs258-s99 / sli des /lecOT /sldOO1.htm.

[2] M. Frumkin, H. Jin, J. Yan. Automation of Data Traffic Control on DSM
Architectures. Proceedings of ICCS 2001, Part II, LNCS 2074, pp.771-780.

[3] H. Jin, M. Frumkin, J. Yan. The OpenMP Implementation of NAS Paral-
lel Benchmarks and Its Performance. NAS Technical Report RNR-99-011,

www.nas.nasa.gov.

[4] L. DeRose. The Hardware Performance Monitor Toolkit. In Proceedings of

Euro-Par, August 2001, pp. 122-131.

[5] J. Taft. Performance of the Overflow-MLP CFD Code on the NASA
Ames 512-CPU Origin System. NAS Technical Report, NAS-00-05,

www.nas.nasa.gov.



3O

20

t_

z 10 ...... ..........._.........................................-_

H OR_LD_MISS L_ _ 20 t

H ORST _MISS Ll_

• -.'_OR ST REF LI[ ">'

O"_LO_REC'I/ "_
E

= _.. , | , , ,| oi.=__

11 21 31

Number Of Processors

HOPLD_MISS_L11

.--.oPSTMissL_
*---_ OP_ST_REF_L1

OP LD REF L1

i . i . I , , ,
11 21 31

Number of Processors

Figure 6: The L1 misses/references in
the original version of the subroutine

(10 9 events).

Figure 7: The L1 misses/references in
the optimized version of tile subrou-

tine (10 9 events).

[6] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and

B. Sinharoy. POWER4 System Microarchitecture. IBM Jour-
nal of Research and Development, Vol. 46, No. 1, 2002.

http: / /www.research.ibm.com/journal/rd/ 461/tendler.htInl.


